1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
use core::ops::{Index, IndexMut};
use core::{fmt, mem, ptr, slice};
use std::alloc::{alloc, dealloc, handle_alloc_error, realloc, Layout};
/// A double-ended queue (abbreviated to _deque_), for which elements can be
/// added or remove from both back and front ends.
///
/// Underneath the hood, this [`Deque`] uses a contiguous memory block as a ring
/// buffer to store values.
///
/// References:
///
/// - [Rust Standard Library: std::collections::VecDeque][1]
/// - [Wikipedia: Circular buffer][2]
///
/// [1]: `std::collections::VecDeque`
/// [2]: https://en.wikipedia.org/wiki/Circular_buffer
// ANCHOR: layout
pub struct Deque<T> {
tail: usize,
head: usize,
ring_buf: RawVec<T>,
}
// ANCHOR_END: layout
/// For demo purpose, set default capacity to 1 in order to trigger
/// buffer expansions easily. This value must be power of 2.
const DEFAULT_CAPACITY: usize = 1;
impl<T> Deque<T> {
/// Constructs a new, empty [`Deque<T>`].
///
/// For convenience, the deque initially allocates a region of a single `T`.
// ANCHOR: new
pub fn new() -> Self {
Self {
tail: 0,
head: 0,
ring_buf: RawVec::with_capacity(DEFAULT_CAPACITY),
}
}
// ANCHOR_END: new
/// Prepends the given element value to the beginning of the container.
///
/// # Parameters
///
/// * `elem` - The element to prepend.
///
/// # Complexity
///
/// Constant.
// ANCHOR: push_front
pub fn push_front(&mut self, elem: T) {
self.try_grow(); // 1
self.tail = self.wrapping_sub(self.tail, 1); // 2
// This is safe because the offset is wrapped inside valid memory region.
unsafe { self.ptr().add(self.tail).write(elem) } // 3
}
// ANCHOR_END: push_front
/// Appends the given element value to the end of the container.
///
/// # Parameters
///
/// * `elem` - The element to append.
///
/// # Complexity
///
/// Constant.
// ANCHOR: push_back
pub fn push_back(&mut self, elem: T) {
self.try_grow(); // 1
let head = self.head;
self.head = self.wrapping_add(self.head, 1); // 2
// This is safe because the offset is wrapped inside valid memory region.
unsafe { self.ptr().add(head).write(elem) } // 3
}
// ANCHOR_END: push_back
/// Removes and returns the first element of the container.
/// If there are no elements in the container, return `None`.
///
/// # Complexity
///
/// Constant.
// ANCHOR: pop_front
pub fn pop_front(&mut self) -> Option<T> {
if self.is_empty() {
return None; // 1
}
let tail = self.tail;
self.tail = self.wrapping_add(self.tail, 1); // 2
// This is safe because the offset is wrapped inside valid memory region.
unsafe { Some(self.ptr().add(tail).read()) } // 3
}
// ANCHOR_END: pop_front
/// Removes and returns the last element of the container.
/// If there are no elements in the container, return `None`.
///
/// # Complexity
///
/// Constant.
// ANCHOR: pop_back
pub fn pop_back(&mut self) -> Option<T> {
if self.is_empty() {
return None; // 1
}
self.head = self.wrapping_sub(self.head, 1); // 2
// This is safe because the offset is wrapped inside valid memory region.
unsafe { Some(self.ptr().add(self.head).read()) } // 3
}
// ANCHOR_END: pop_back
/// Peeks the first element of the container.
/// If there are no elements in the container, return `None`.
///
/// # Complexity
///
/// Constant.
// ANCHOR: front
pub fn front(&self) -> Option<&T> {
if self.is_empty() {
return None;
}
// This is safe because the offset is wrapped inside valid memory region.
unsafe { Some(&*self.ptr().add(self.tail)) }
}
// ANCHOR_END: front
/// Peeks the last element of the container.
/// If there are no elements in the container, return `None`.
///
/// # Complexity
///
/// Constant.
// ANCHOR: back
pub fn back(&self) -> Option<&T> {
if self.is_empty() {
return None;
}
let head = self.wrapping_sub(self.head, 1);
// This is safe because the offset is wrapped inside valid memory region.
unsafe { Some(&*self.ptr().add(head)) }
}
// ANCHOR_END: back
/// Checks whether the container is empty.
///
/// # Complexity
///
/// Constant.
// ANCHOR: is_empty
pub fn is_empty(&self) -> bool {
self.len() == 0
}
// ANCHOR_END: is_empty
/// Gets the number of elements in the container.
///
/// # Complexity
///
/// Constant.
// ANCHOR: len
pub fn len(&self) -> usize {
self.head.wrapping_sub(self.tail) & (self.cap() - 1)
}
// ANCHOR_END: len
/// Creates an iterator that yields immutable reference of each element.
// ANCHOR: iter
pub fn iter(&self) -> Iter<T> {
Iter {
head: self.head,
tail: self.tail,
// This is safe because only initialized contents would be accessed.
ring_buf: unsafe { self.ring_buf.as_slice() },
}
}
// ANCHOR_END: iter
/// Creates an iterator that yields mutable reference of each element.
// ANCHOR: iter_mut
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut {
head: self.head,
tail: self.tail,
// This is safe because only initialized contents would be accessed.
ring_buf: unsafe { self.ring_buf.as_mut_slice() },
}
}
// ANCHOR_END: iter_mut
/// Checks if underlying ring buffer is full.
// ANCHOR: is_full
fn is_full(&self) -> bool {
self.cap() - self.len() == 1
}
// ANCHOR_END: is_full
/// Resizes the underlying ring buffer if necessary.
///
/// This method simply makes the ring buffer contiguous for the beneath
/// scenario (tail > head). For a thorough Implementation, please refer to
/// [`VecDeque::handle_capacity_increase`][1].
///
/// ```console,ignore
/// Before:
/// h t
/// [o o o o x x o o]
///
/// Resize:
/// h t
/// [o o o o x x o o | x x x x x x x x]
///
/// Copy:
/// t h
/// [x x x x x x o o | o o o o x x x x]
/// _ _ _ _ _ _ _ _
/// ```
///
/// # Complexity
///
/// Linear in the size of the container.
///
/// [1]: https://github.com/rust-lang/rust/blob/07194ff/library/alloc/src/collections/vec_deque/mod.rs#L405-L447
// ANCHOR: try_grow
fn try_grow(&mut self) {
if self.is_full() {
let old_cap = self.cap(); // 1
self.ring_buf.try_grow(); // 2
// 3
if self.tail > self.head {
// The content of ring buffer won't overlapped, so it's safe to
// call `copy_nonoverlapping`. It's also safe to advance the
// pointer by `old_cap` since the buffer has been doubled.
unsafe {
let src = self.ptr(); // 4-1
let dst = self.ptr().add(old_cap); // 4-2
ptr::copy_nonoverlapping(src, dst, self.head);
}
self.head += old_cap; // 5
}
}
}
// ANCHOR_END: try_grow
/// Returns the actual index of the underlying ring buffer for a given
/// logical index + addend.
// ANCHOR: wrapping_add
fn wrapping_add(&self, index: usize, addend: usize) -> usize {
wrap_index(index.wrapping_add(addend), self.cap())
}
// ANCHOR_END: wrapping_add
/// Returns the actual index of the underlying ring buffer for a given
/// logical index - subtrahend.
// ANCHOR: wrapping_sub
fn wrapping_sub(&self, index: usize, subtrahend: usize) -> usize {
wrap_index(index.wrapping_sub(subtrahend), self.cap())
}
// ANCHOR_END: wrapping_sub
/// An abstraction for accessing the pointer of the ring buffer.
// ANCHOR: ptr
fn ptr(&self) -> *mut T {
self.ring_buf.ptr
}
// ANCHOR_END: ptr
/// An abstraction for accessing the capacity of the ring buffer.
// ANCHOR: cap
fn cap(&self) -> usize {
self.ring_buf.cap()
}
// ANCHOR_END: cap
}
// ANCHOR: Drop
impl<T> Drop for Deque<T> {
fn drop(&mut self) {
while let Some(_) = self.pop_back() {}
}
}
// ANCHOR_END: Drop
/// Returns the actual index of the underlying ring buffer for a given logical index.
///
/// To ensure all bits of `size - 1` is set to 1, here the size must always be
/// power of two.
// ANCHOR: wrap_index
fn wrap_index(index: usize, size: usize) -> usize {
debug_assert!(size.is_power_of_two());
index & (size - 1)
}
// ANCHOR_END: wrap_index
/// An immutable iterator over the elements of a [`Deque`].
///
/// This struct is created by the `iter` method on [`Deque`].
// ANCHOR: Iter_layout
pub struct Iter<'a, T> {
head: usize,
tail: usize,
ring_buf: &'a [T],
}
// ANCHOR_END: Iter_layout
// ANCHOR: Iter
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
if self.tail == self.head {
return None; // 1
}
let tail = self.tail; // 2
self.tail = wrap_index(self.tail.wrapping_add(1), self.ring_buf.len()); // 3
self.ring_buf.get(tail) // 4
}
}
// ANCHOR_END: Iter
/// A mutable iterator over the elements of a [`Deque`].
///
/// This struct is created by the `iter_mut` method on [`Deque`].
// ANCHOR: IterMut_layout
pub struct IterMut<'a, T> {
head: usize,
tail: usize,
ring_buf: &'a mut [T],
}
// ANCHOR_END: IterMut_layout
// ANCHOR: IterMut
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
fn next(&mut self) -> Option<Self::Item> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail.wrapping_add(1), self.ring_buf.len());
// This unsafe block is needed for solving the limitation of Iterator
// trait: the `&mut self` is bound to an anonymous lifetime which rustc
// cannot figure out whether it would outlive returning element. Hence
// the explicit pointer casting is required.
unsafe {
let ptr = self.ring_buf as *mut [T]; // 1
let slice = &mut *ptr; // 2
slice.get_mut(tail) // 3
}
}
}
// ANCHOR_END: IterMut
/// An owning iterator over the elements of a [`Deque`].
///
/// This struct is created by the `into_iter` method on [`Deque`].
// ANCHOR: IntoIter_layout
pub struct IntoIter<T>(Deque<T>);
// ANCHOR_END: IntoIter_layout
// ANCHOR: IntoIter
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.0.pop_front()
}
}
// ANCHOR_END: IntoIter
// ANCHOR: IntoIterator
impl<T> IntoIterator for Deque<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter(self)
}
}
// ANCHOR_END: IntoIterator
// ANCHOR: IntoIterator_ref
impl<'a, T> IntoIterator for &'a Deque<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut Deque<T> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
// ANCHOR_END: IntoIterator_ref
// ANCHOR: Index
impl<T> Index<usize> for Deque<T> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
assert!(index < self.len(), "Out of bound");
let index = self.wrapping_add(self.tail, index);
// This is safe because the offset is wrapped inside valid memory region.
unsafe { &*self.ptr().add(index) }
}
}
// ANCHOR_END: Index
// ANCHOR: IndexMut
impl<T> IndexMut<usize> for Deque<T> {
fn index_mut(&mut self, index: usize) -> &mut T {
assert!(index < self.len(), "Out of bound");
let index = self.wrapping_add(self.tail, index);
// This is safe because the offset is wrapped inside valid memory region.
unsafe { &mut *self.ptr().add(index) }
}
}
// ANCHOR_END: IndexMut
// ANCHOR: Debug
impl<T: fmt::Debug> fmt::Debug for Deque<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
// ANCHOR_END: Debug
/// A growable, contiguous heap memory allocation that stores homogeneous elements.
///
/// This type can be seen as a simplified version of [`RawVec`] inside Rust
/// Standard Library. Use at your own risk.
///
/// [`RawVec`]: https://github.com/rust-lang/rust/blob/ff6ee2a7/library/alloc/src/raw_vec.rs
#[derive(Debug)]
// ANCHOR: RawVec
struct RawVec<T> {
ptr: *mut T,
cap: usize,
}
// ANCHOR_END: RawVec
impl<T> RawVec<T> {
/// Allocates on the heap with a certain capacity.
///
/// The `cap` argument would be ignored when allocating zero sized types
/// and use zero instead. The caller would see a quite large capacity.
/// See [`RawVec::cap`] for more.
// ANCHOR: RawVec_with_capacity
pub fn with_capacity(cap: usize) -> Self {
let layout = Layout::array::<T>(cap).unwrap(); // 1
// 2
if layout.size() == 0 {
// This is safe for zero sized types. However, be careful when facing
// zero capacity layouts. It must be replaced with an actual pointer
// before operations such as dereference or read/write.
let ptr = ptr::NonNull::dangling().as_ptr(); // 3
Self { ptr, cap: 0 }
} else {
// This is safe because it conforms to the [safety contracts][1].
//
// [1]: https://doc.rust-lang.org/1.49.0/alloc/alloc/trait.GlobalAlloc.html#safety-1
let ptr = unsafe { alloc(layout) }; // 4
if ptr.is_null() {
handle_alloc_error(layout);
}
Self {
ptr: ptr.cast(),
cap,
}
}
}
// ANCHOR_END: RawVec_with_capacity
/// Doubles the size of the memory region.
///
/// This method maybe only reallocates non-zero sized types. Non-zero sized
/// types would not grow since they are not actually allocated.
// ANCHOR: RawVec_try_grow
pub fn try_grow(&mut self) {
if mem::size_of::<T>() == 0 {
return; // 1
}
if self.cap == 0 {
*self = Self::with_capacity(1); // 2
return;
}
let old_layout = Layout::array::<T>(self.cap).unwrap(); // 3
let new_cap = self.cap << 1;
let new_size = old_layout.size() * new_cap;
// This is safe because it conforms to the [safety contracts][1].
//
// [1]: https://doc.rust-lang.org/1.49.0/alloc/alloc/trait.GlobalAlloc.html#safety-4
let ptr = unsafe { realloc(self.ptr.cast(), old_layout, new_size) };
if ptr.is_null() {
handle_alloc_error(old_layout);
}
// ...Old allocation is unusable and may be released from here at anytime.
self.ptr = ptr.cast(); // 4
self.cap = new_cap;
}
// ANCHOR_END: RawVec_try_grow
/// Gets the capacity of the allocation.
///
/// If `T` is zero sized, this will always be the largest possible power of
/// two of `usize`. Currently `(usize::MAX + 1) / 2`.
///
/// Ref: [https://github.com/rust-lang/rust/blob/f7534b/library/alloc/src/collections/vec_deque/mod.rs#L61]
// ANCHOR: RawVec_cap
pub fn cap(&self) -> usize {
if mem::size_of::<T>() == 0 {
1usize << (mem::size_of::<usize>() * 8 - 1)
} else {
self.cap
}
}
// ANCHOR_END: RawVec_cap
/// Returns an immutable slice of underlying allocation.
///
/// This is unsafe because the slice may not have all its contents initialized.
// ANCHOR: RawVec_as_slice
pub unsafe fn as_slice(&self) -> &[T] {
slice::from_raw_parts(self.ptr.cast(), self.cap())
}
// ANCHOR_END: RawVec_as_slice
/// Returns a mutable slice of underlying allocation.
///
/// This is unsafe because the slice may not have all its contents initialized.
// ANCHOR: RawVec_as_mut_slice
pub unsafe fn as_mut_slice(&self) -> &mut [T] {
slice::from_raw_parts_mut(self.ptr.cast(), self.cap())
}
// ANCHOR_END: RawVec_as_mut_slice
}
// ANCHOR: RawVec_drop
impl<T> Drop for RawVec<T> {
/// Deallocates the underlying memory region by calculating the type layout
/// and number of elements.
///
/// This only drop the memory block allocated by `RawVec` itself but not
/// dropping the contents. Callers need to drop the contents by themselves.
fn drop(&mut self) {
let layout = Layout::array::<T>(self.cap).unwrap(); // 1
if layout.size() > 0 {
// This is safe because it conforms to the [safety contracts][1].
//
// [1]: https://doc.rust-lang.org/1.49.0/alloc/alloc/trait.GlobalAlloc.html#safety-2
unsafe { dealloc(self.ptr.cast(), layout) }
}
}
}
// ANCHOR_END: RawVec_drop
#[cfg(test)]
mod deque {
use super::Deque;
#[test]
fn push_pop() {
let mut d = Deque::new();
assert_eq!(d.len(), 0);
assert_eq!(d.front(), None);
assert_eq!(d.back(), None);
d.push_back(1);
d.push_back(2);
// [1, 2]
assert_eq!(d.len(), 2);
assert_eq!(d.front(), Some(&1));
assert_eq!(d.back(), Some(&2));
d.push_front(3);
d.push_front(4);
// [4, 3, 1, 2]
assert_eq!(d.len(), 4);
assert_eq!(d.front(), Some(&4));
assert_eq!(d.back(), Some(&2));
assert_eq!(d.pop_front(), Some(4));
assert_eq!(d.pop_front(), Some(3));
assert_eq!(d.pop_front(), Some(1));
assert_eq!(d.pop_front(), Some(2));
assert_eq!(d.pop_front(), None);
assert_eq!(d.len(), 0);
assert_eq!(d.front(), None);
assert_eq!(d.back(), None);
d.push_front(5);
d.push_front(6);
// [6, 5]
assert_eq!(d.len(), 2);
assert_eq!(d.front(), Some(&6));
assert_eq!(d.back(), Some(&5));
assert_eq!(d.pop_back(), Some(5));
assert_eq!(d.pop_back(), Some(6));
assert_eq!(d.pop_back(), None);
assert_eq!(d.len(), 0);
assert_eq!(d.front(), None);
assert_eq!(d.back(), None);
}
#[test]
fn iter() {
let mut d = Deque::new();
d.push_back(1);
d.push_back(2);
d.push_front(3);
d.push_front(4);
d.push_front(5);
d.push_front(6);
// [6, 5, 4, 3, 1, 2]
let mut iter = d.iter();
assert_eq!(iter.next(), Some(&6));
assert_eq!(iter.next(), Some(&5));
assert_eq!(iter.next(), Some(&4));
assert_eq!(iter.next(), Some(&3));
assert_eq!(iter.next(), Some(&1));
assert_eq!(iter.next(), Some(&2));
assert_eq!(iter.next(), None);
}
#[test]
fn iter_mut() {
let mut d = Deque::new();
d.push_back(1);
d.push_back(2);
d.push_front(3);
d.push_front(4);
// [4, 3, 1, 2]
for elem in d.iter_mut() {
*elem *= *elem;
}
let mut iter = d.iter_mut();
assert_eq!(iter.next(), Some(&mut 16));
assert_eq!(iter.next(), Some(&mut 9));
assert_eq!(iter.next(), Some(&mut 1));
assert_eq!(iter.next(), Some(&mut 4));
assert_eq!(iter.next(), None);
}
#[test]
fn into_iter() {
let mut d = Deque::new();
d.push_back(1);
d.push_back(2);
d.push_front(3);
d.push_front(4);
// [4, 3, 1, 2]
let l = d.into_iter().collect::<Vec<_>>();
assert_eq!(&[4, 3, 1, 2], &l[..]);
let mut d = Deque::new();
d.push_back(1);
d.push_back(2);
d.push_front(3);
d.push_front(4);
// [4, 3, 1, 2]
let mut l = vec![];
for elem in &d {
l.push(elem);
}
assert_eq!(&[&4, &3, &1, &2], &l[..]);
let mut d = Deque::new();
d.push_back(1);
d.push_back(2);
d.push_front(3);
d.push_front(4);
// [4, 3, 1, 2]
for elem in &mut d {
*elem *= *elem;
}
let mut iter = d.iter_mut();
assert_eq!(iter.next(), Some(&mut 16));
assert_eq!(iter.next(), Some(&mut 9));
assert_eq!(iter.next(), Some(&mut 1));
assert_eq!(iter.next(), Some(&mut 4));
assert_eq!(iter.next(), None);
}
#[test]
fn index() {
let mut d = Deque::new();
d.push_back(1);
d.push_back(2);
d.push_front(3);
d.push_front(4);
// [4, 3, 1, 2]
for i in 0..d.len() {
d[i] *= d[i];
}
assert_eq!(d[0], 16);
assert_eq!(d[1], 9);
assert_eq!(d[2], 1);
assert_eq!(d[3], 4);
}
#[test]
fn zero_sized() {
let mut d = Deque::new();
d.push_back(());
d.push_front(());
d.push_front(());
d.push_back(());
assert_eq!(d.len(), 4);
assert_eq!(d.pop_back(), Some(()));
assert_eq!(d.pop_back(), Some(()));
assert_eq!(d.len(), 2);
assert_eq!((d[0], d[1]), ((), ()));
assert_eq!(d.front(), Some(&()));
assert_eq!(d.back(), Some(&()));
assert_eq!(d.into_iter().collect::<Vec<_>>(), vec![(), ()],);
}
#[test]
fn complex_data() {
let mut d = Deque::new();
assert_eq!(d.len(), 0);
d.push_front(vec![]);
d.push_back(vec![Box::new(())]);
d.push_back(vec![Box::new(()), Box::new(())]);
d.push_front(vec![Box::new(()), Box::new(()), Box::new(())]);
assert_eq!(d[0].len(), 3);
assert_eq!(d[1].len(), 0);
assert_eq!(d[2].len(), 1);
assert_eq!(d[3].len(), 2);
}
#[test]
fn drop() {
static mut DROPS: u32 = 0;
struct S;
impl Drop for S {
fn drop(&mut self) {
unsafe {
DROPS += 1;
}
}
}
let mut d = Deque::new();
d.push_back(S);
d.push_back(S);
d.push_back(S);
d.push_front(S);
d.push_front(S);
core::mem::drop(d);
unsafe {
assert_eq!(DROPS, 5);
}
}
}