logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
use std::borrow::Borrow;
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
use std::mem;

/// A hash map implemented with separate chaining collision resolution strategy.
///
/// This implementation is focused on hash map functionalities, so we choose to
/// adopt Rust `DefaultHasher` to avoid avalanche of details, and vectors as
/// the underlying data structure for separate chaining method.
///
/// The interface is a simplified version of Rust `HashMap`.
///
/// References:
///
/// - [Rust Standard Library: std::collections::HashMap][1]
/// - [C++ Container Library: std::unordered_map][2]
///
/// [1]: https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html
/// [2]: https://en.cppreference.com/w/cpp/container/unordered_map
pub struct HashMap<K, V>
where
    K: Hash + Eq,
{
    buckets: Vec<Bucket<K, V>>,
    len: usize,
}

/// Internal container to store collided elements.
type Bucket<K, V> = Vec<(K, V)>;

/// Default load factor.
const LOAD_FACTOR: f64 = 0.75;

/// Computes hash for a given key and modulus.
///
/// Would fail if `len` equals to zero.
fn make_hash<X>(x: &X, len: usize) -> Option<usize>
where
    X: Hash + ?Sized,
{
    if len == 0 {
        return None;
    }
    let mut hasher = DefaultHasher::new();
    x.hash(&mut hasher);
    Some(hasher.finish() as usize % len)
}

impl<K, V> HashMap<K, V>
where
    K: Hash + Eq,
{
    /// Creates an empty map with capacity 0.
    ///
    /// The allocation is triggered at the first insertion occurs.
    pub fn new() -> Self {
        Default::default()
    }

    /// Creates a map with a given capacity as the number of underlying buckets.
    ///
    /// # Parameters
    ///
    /// * `cap`: The number of bucket in the map.
    pub fn with_capacity(cap: usize) -> Self {
        let mut buckets: Vec<Bucket<K, V>> = Vec::with_capacity(cap);
        for _ in 0..cap {
            buckets.push(Bucket::new());
        }
        Self { buckets, len: 0 }
    }

    /// Gets a reference to the value under the specified key.
    ///
    /// We use Q here to accept any type that K can be borrowed as. For example,
    /// given a HashMap m using String as key, both m.get(&String) and m.get(&str)
    /// would work because String can be borrow as &str. The same technique is
    /// applied for `get_mut` and `remove`.
    ///
    /// Learn more about Borrow trait:
    ///
    /// - [Trait std::borrow:Borrow][1]
    /// - [TRPL 1st edition: Borrow and AsRef][2]
    ///
    /// # Complexity
    ///
    /// Constant (amortized).
    ///
    /// [1]: https://doc.rust-lang.org/stable/std/borrow/trait.Borrow.html
    /// [2]: https://doc.rust-lang.org/stable/book/first-edition/borrow-and-asref.html
    pub fn get<Q>(&self, key: &Q) -> Option<&V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        let index = self.make_hash(key)?;
        self.buckets.get(index).and_then(|bucket| {
            bucket
                .iter()
                .find(|(k, _)| key == k.borrow())
                .map(|(_, v)| v)
        })
    }

    /// Gets a mutable reference to the value under the specified key.
    ///
    /// # Complexity
    ///
    /// Constant (amortized).
    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        let index = self.make_hash(key)?;
        self.buckets.get_mut(index).and_then(|bucket| {
            bucket
                .iter_mut()
                .find(|(k, _)| key == k.borrow())
                .map(|(_, v)| v)
        })
    }

    /// Inserts key-value pair into the map. Replaces previous value if
    /// the same key exists at the same index.
    ///
    /// Returns the old value if the key presents. Otherwise returns `None`.
    ///
    /// Steps are described as following:
    ///
    /// 1. Try to resize hashmap to ensure an appropriate load factor.
    /// 2. Compute hash of the key to get the inner bucket under certain index.
    /// 3. Find if there is already a pair with identical key.
    ///     1. If yes, substitute for it.
    ///     2. Else, push new value into the bucket.
    ///
    /// # Parameters
    ///
    /// * `key` - Key of the pair to insert.
    /// * `value` - Value of the pair to insert.
    ///
    /// # Complexity
    ///
    /// Constant (amortized).
    ///
    /// # Panics
    ///
    /// Panics when either hash map cannot make a hash, or cannot access any
    /// available bucket to insert new value. These cases shall not happend
    /// under a well-implemented resize policy.
    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
        self.try_resize();
        let index = self
            .make_hash(&key)
            .expect("Failed to make a hash while insertion");
        let bucket = self
            .buckets
            .get_mut(index)
            .expect(&format!("Failed to get bucket[{}] while insetion", index));
        match bucket.iter_mut().find(|(k, _)| *k == key) {
            Some((_, v)) => Some(mem::replace(v, value)),
            None => {
                bucket.push((key, value));
                self.len += 1; //  Length increase by one.
                None
            }
        }
    }

    /// Removes a pair with specified key.
    ///
    /// The caveat is that ordering in the bucket cannot be preserved due to
    /// the removal using `swap_remove` to ensure O(1) deletion.
    ///
    /// # Parameters
    ///
    /// * `key` - Key of the pair to remove.
    ///
    /// # Complexity
    ///
    /// Constant. This operation won't shrink to fit automatically.
    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        let index = self.make_hash(key)?;
        self.buckets
            .get_mut(index)
            .and_then(|bucket| {
                bucket
                    .iter_mut()
                    .position(|(k, _)| key == (*k).borrow())
                    .map(|index| bucket.swap_remove(index).1) // Extract the pair.
            })
            .map(|v| {
                self.len -= 1; // Length decreases by one.
                v
            })
    }

    /// Removes all key-value pairs but keeps the allocated memory for reuse.
    ///
    /// # Complexity
    ///
    /// Linear in the size of the container.
    pub fn clear(&mut self) {
        for bucket in &mut self.buckets {
            *bucket = Bucket::new();
        }
        self.len = 0;
    }

    ///	Checks whether the container is empty.
    ///
    /// # Complexity
    ///
    /// Constant.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Gets the number of key-value pairs in the container.
    ///
    /// # Complexity
    ///
    /// Constant.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Gets the number of underlying buckets.
    ///
    /// # Complexity
    ///
    /// Constant.
    pub fn bucket_count(&self) -> usize {
        self.buckets.len()
    }

    /// Computes hash for a given key.
    ///
    /// This is an internal function which calls a private module function.
    fn make_hash<X: Hash + ?Sized>(&self, x: &X) -> Option<usize> {
        make_hash(x, self.bucket_count())
    }

    /// Tries to resize the capacity if the usage is over the threshold. The
    /// threshold (load factor) of current hash policy is 75%.
    ///
    /// The are two situation may occur in this function. 1) The capacity is
    /// zero, and 2) the capacity reaches the limit. The reason to handle the
    /// first situation here is to delay the actual allocation timing for
    /// conforming to the lazy allocation pattern of Rust philosophy.
    fn try_resize(&mut self) {
        let entry_count = self.len();
        let capacity = self.bucket_count();

        // Initialization.
        if capacity == 0 {
            self.buckets.push(Bucket::new());
            return;
        }

        if entry_count as f64 / capacity as f64 > LOAD_FACTOR {
            // Resize. Rehash. Reallocate!
            let mut new_map = Self::with_capacity(capacity << 1);
            self.buckets
                .iter_mut()
                .flat_map(|bucket| mem::replace(bucket, vec![]))
                .for_each(|(k, v)| {
                    new_map.insert(k, v);
                });
            *self = new_map;
        }
    }

    /// Creates an iterator that yields immutable reference of each element
    /// in arbitrary order.
    pub fn iter(&self) -> impl Iterator<Item = (&K, &V)> {
        self.buckets.iter().flat_map(|b| b).map(|(k, v)| (k, v))
    }

    /// Creates an iterator that yields mutable reference of each element
    /// in arbitrary order.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (&K, &mut V)> {
        self.buckets
            .iter_mut()
            .flat_map(|b| b)
            .map(|(k, v)| (&*k, v))
    }

    /// Creates a consuming iterator yielding elements in arbitrary order.
    /// That is, one that moves each value out of the list. The list cannot be
    /// used after calling this.
    pub fn into_iter(self) -> impl Iterator<Item = (K, V)> {
        self.buckets.into_iter().flat_map(|b| b)
    }
}

impl<K, V> Default for HashMap<K, V>
where
    K: Hash + Eq,
{
    fn default() -> Self {
        Self {
            buckets: Vec::<Bucket<K, V>>::new(),
            len: 0,
        }
    }
}

#[cfg(test)]
mod separate_chaining {
    use super::HashMap;

    type Map<'a> = HashMap<&'a str, &'a str>;

    #[test]
    fn basics() {
        let m = Map::new();
        assert_eq!(m.len(), 0);
        assert!(m.is_empty());
    }

    #[test]
    fn insert() {
        let mut m = Map::new();

        let ret = m.insert("cat", "cute");
        assert!(ret.is_none());
        assert_eq!(m.len(), 1);

        m.insert("dog", "loyal");
        assert_eq!(m.len(), 2);

        // Inserting the same key must replace and return previous entry.
        let ret = m.insert("cat", "fat");
        assert_eq!(m.len(), 2);
        assert_eq!(ret, Some("cute"));

        m.insert("rat", "lovely");
        assert_eq!(m.len(), 3);
    }

    #[test]
    fn remove() {
        let mut m = Map::new();

        m.insert("cat", "cute");
        m.insert("dog", "loyal");
        m.insert("rat", "lovely");

        // Test remove
        m.remove(&"cat");
        assert_eq!(m.len(), 2);

        // No effect
        m.remove(&"cat");
        assert_eq!(m.len(), 2);

        m.remove(&"dog");
        assert_eq!(m.len(), 1);

        // No effect
        m.remove(&"mice");
        assert_eq!(m.len(), 1);

        m.remove(&"rat");
        assert_eq!(m.len(), 0);

        // Use String as key
        let mut m = HashMap::new();
        m.insert("cat".to_string(), "cute");
        m.insert("dog".to_string(), "loyal");
        m.insert("rat".to_string(), "lovely");

        // Query with &String
        m.remove(&"cat".to_string());
        assert_eq!(m.len(), 2);

        // Query with &str also work
        m.remove("dog");
        assert_eq!(m.len(), 1);
    }

    #[test]
    fn get() {
        let mut m = Map::new();

        m.insert("cat", "cute");
        m.insert("dog", "loyal");

        assert_eq!(m.get(&"cat"), Some(&"cute"));
        assert_eq!(m.get(&"dog"), Some(&"loyal"));
        assert_eq!(m.get(&"rat"), None);

        // Use String as key (HashMap<String, &str>)
        let mut m = HashMap::new();
        m.insert("cat".to_string(), "cute");
        m.insert("dog".to_string(), "loyal");

        // Query with &String
        assert_eq!(m.get(&"cat".to_string()), Some(&"cute"));
        // Query with &str also work
        assert_eq!(m.get("dog"), Some(&"loyal"));
    }

    #[test]
    fn get_mut() {
        let mut m = Map::new();
        m.insert("cat", "cute");
        m.insert("dog", "loyal");

        assert_eq!(m.get_mut(&"cat"), Some(&mut "cute"));
        assert_eq!(m.get_mut(&"dog"), Some(&mut "loyal"));
        assert!(m.get_mut(&"rat").is_none());

        // Mutate the value
        m.get_mut(&"cat").map(|v| *v = "lazy");
        assert_eq!(m.get_mut(&"cat"), Some(&mut "lazy"));

        // Use String as key
        let mut m = HashMap::new();
        m.insert("cat".to_string(), "cute");
        m.insert("dog".to_string(), "loyal");

        // Query with &String
        assert_eq!(m.get_mut(&"cat".to_string()), Some(&mut "cute"));
        // Query with &str also work
        assert_eq!(m.get_mut("dog"), Some(&mut "loyal"));
    }

    #[test]
    fn resize() {
        let mut m = Map::new();
        assert_eq!(m.bucket_count(), 0);

        m.insert("cat", "cute");
        assert_eq!(m.len(), 1);
        assert_eq!(m.bucket_count(), 1);

        m.insert("dog", "loyal");
        assert_eq!(m.len(), 2);
        assert_eq!(m.bucket_count(), 2);

        m.insert("rat", "lovely");
        assert_eq!(m.len(), 3);
        assert_eq!(m.bucket_count(), 4);

        m.insert("dragon", "omnipotent");
        assert_eq!(m.len(), 4);
        assert_eq!(m.bucket_count(), 4);

        m.insert("human", "lazy");
        assert_eq!(m.len(), 5);
        assert_eq!(m.bucket_count(), 8);
    }

    #[test]
    fn clear() {
        let mut m = Map::new();
        m.insert("cat", "cute");
        m.insert("dog", "loyal");

        m.clear();
        assert!(m.is_empty());
        assert_eq!(m.len(), 0);
        assert_eq!(m.bucket_count(), 2); // Preserve previous allocation.
    }

    #[test]
    fn iter() {
        let mut m = Map::new();
        m.insert("cat", "cute");
        m.insert("dog", "loyal");
        let mut it = m.iter();
        assert!(it.next().is_some());
        assert!(it.next().is_some());
        assert!(it.next().is_none());
    }

    #[test]
    fn iter_mut() {
        let mut m = Map::new();
        m.insert("cat", "cute");
        m.insert("dog", "loyal");
        m.iter_mut().for_each(|(_, v)| *v = "lazy");
        assert_eq!(m.get("cat"), Some(&"lazy"));
        assert_eq!(m.get("dog"), Some(&"lazy"));
    }

    #[test]
    fn into_iter() {
        let mut m = Map::new();
        m.insert("cat", "cute");
        m.insert("dog", "loyal");
        m.insert("rat", "lovely");
        let vec = m.into_iter().collect::<Vec<_>>();

        assert_eq!(vec.len(), 3);
        assert!(vec.contains(&("cat", "cute")));
        assert!(vec.contains(&("dog", "loyal")));
        assert!(vec.contains(&("rat", "lovely")));
    }
}

#[cfg(test)]
// TODO: linear probing method
mod linear_probing {
    #[ignore]
    #[test]
    fn basics() {}

    #[ignore]
    #[test]
    fn insert() {}

    #[ignore]
    #[test]
    fn remove() {}

    #[ignore]
    #[test]
    fn get() {}

    #[ignore]
    #[test]
    fn get_mut() {}

    #[ignore]
    #[test]
    fn resize() {}

    #[ignore]
    #[test]
    fn clear() {}
}